1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
| """ 在自定義數據集上訓練 YOLOv5 模型。 從最新的 YOLOv5 版本自動下載模型和數據集。
用法 - 單 GPU 訓練: $ python train.py --data coco128.yaml --weights yolov5s.pt --img 640 # from pretrained (recommended) $ python train.py --data coco128.yaml --weights '' --cfg yolov5s.yaml --img 640 # from scratch
用法 - 多 GPU DDP 訓練: $ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 train.py --data coco128.yaml --weights yolov5s.pt --img 640 --device 0,1,2,3
模型: https://github.com/ultralytics/yolov5/tree/master/models 數據集: https://github.com/ultralytics/yolov5/tree/master/data 教程: https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data """
import argparse import math import os import random import sys import time from copy import deepcopy from datetime import datetime from pathlib import Path
import numpy as np import torch import torch.distributed as dist import torch.nn as nn import yaml from torch.optim import lr_scheduler from tqdm import tqdm
FILE = Path(__file__).resolve() ROOT = FILE.parents[0] if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) ROOT = Path(os.path.relpath(ROOT, Path.cwd()))
import val as validate from models.experimental import attempt_load from models.yolo import Model from utils.autoanchor import check_anchors from utils.autobatch import check_train_batch_size from utils.callbacks import Callbacks from utils.dataloaders import create_dataloader from utils.downloads import attempt_download, is_url from utils.general import (LOGGER, TQDM_BAR_FORMAT, check_amp, check_dataset, check_file, check_git_info, check_git_status, check_img_size, check_requirements, check_suffix, check_yaml, colorstr, get_latest_run, increment_path, init_seeds, intersect_dicts, labels_to_class_weights, labels_to_image_weights, methods, one_cycle, print_args, print_mutation, strip_optimizer, yaml_save) from utils.loggers import Loggers from utils.loggers.comet.comet_utils import check_comet_resume from utils.loss import ComputeLoss from utils.metrics import fitness from utils.plots import plot_evolve from utils.torch_utils import (EarlyStopping, ModelEMA, de_parallel, select_device, smart_DDP, smart_optimizer, smart_resume, torch_distributed_zero_first)
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) RANK = int(os.getenv('RANK', -1)) WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1)) GIT_INFO = check_git_info()
def train(hyp, opt, device, callbacks): save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \ Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \ opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze callbacks.run('on_pretrain_routine_start')
w = save_dir / 'weights' (w.parent if evolve else w).mkdir(parents=True, exist_ok=True) last, best = w / 'last.pt', w / 'best.pt'
if isinstance(hyp, str): with open(hyp, errors='ignore') as f: hyp = yaml.safe_load(f) LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items())) opt.hyp = hyp.copy()
if not evolve: yaml_save(save_dir / 'hyp.yaml', hyp) yaml_save(save_dir / 'opt.yaml', vars(opt))
data_dict = None if RANK in {-1, 0}: loggers = Loggers(save_dir, weights, opt, hyp, LOGGER)
for k in methods(loggers): callbacks.register_action(k, callback=getattr(loggers, k))
data_dict = loggers.remote_dataset if resume: weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size
plots = not evolve and not opt.noplots cuda = device.type != 'cpu' init_seeds(opt.seed + 1 + RANK, deterministic=True) with torch_distributed_zero_first(LOCAL_RANK): data_dict = data_dict or check_dataset(data) train_path, val_path = data_dict['train'], data_dict['val'] nc = 1 if single_cls else int(data_dict['nc']) names = {0: 'item'} if single_cls and len(data_dict['names']) != 1 else data_dict['names'] is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt')
check_suffix(weights, '.pt') pretrained = weights.endswith('.pt') if pretrained: with torch_distributed_zero_first(LOCAL_RANK): weights = attempt_download(weights) ckpt = torch.load(weights, map_location='cpu') model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] csd = ckpt['model'].float().state_dict() csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) model.load_state_dict(csd, strict=False) LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') else: model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) amp = check_amp(model)
freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))] for k, v in model.named_parameters(): v.requires_grad = True if any(x in k for x in freeze): LOGGER.info(f'freezing {k}') v.requires_grad = False
gs = max(int(model.stride.max()), 32) imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2)
if RANK == -1 and batch_size == -1: batch_size = check_train_batch_size(model, imgsz, amp) loggers.on_params_update({"batch_size": batch_size})
nbs = 64 accumulate = max(round(nbs / batch_size), 1) hyp['weight_decay'] *= batch_size * accumulate / nbs optimizer = smart_optimizer(model, opt.optimizer, hyp['lr0'], hyp['momentum'], hyp['weight_decay'])
if opt.cos_lr: lf = one_cycle(1, hyp['lrf'], epochs) else: lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf'] scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
ema = ModelEMA(model) if RANK in {-1, 0} else None
best_fitness, start_epoch = 0.0, 0 if pretrained: if resume: best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume) del ckpt, csd
if cuda and RANK == -1 and torch.cuda.device_count() > 1: LOGGER.warning('WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n' 'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.') model = torch.nn.DataParallel(model)
if opt.sync_bn and cuda and RANK != -1: model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device) LOGGER.info('Using SyncBatchNorm()')
train_loader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls, hyp=hyp, augment=True, cache=None if opt.cache == 'val' else opt.cache, rect=opt.rect, rank=LOCAL_RANK, workers=workers, image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: '), shuffle=True) labels = np.concatenate(dataset.labels, 0) mlc = int(labels[:, 0].max()) assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'
if RANK in {-1, 0}: val_loader = create_dataloader(val_path, imgsz, batch_size // WORLD_SIZE * 2, gs, single_cls, hyp=hyp, cache=None if noval else opt.cache, rect=True, rank=-1, workers=workers * 2, pad=0.5, prefix=colorstr('val: '))[0]
if not resume: if not opt.noautoanchor: check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) model.half().float()
callbacks.run('on_pretrain_routine_end', labels, names)
if cuda and RANK != -1: model = smart_DDP(model)
nl = de_parallel(model).model[-1].nl hyp['box'] *= 3 / nl hyp['cls'] *= nc / 80 * 3 / nl hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl hyp['label_smoothing'] = opt.label_smoothing model.nc = nc model.hyp = hyp model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc model.names = names
t0 = time.time() nb = len(train_loader) nw = max(round(hyp['warmup_epochs'] * nb), 100) last_opt_step = -1 maps = np.zeros(nc) results = (0, 0, 0, 0, 0, 0, 0) scheduler.last_epoch = start_epoch - 1 scaler = torch.cuda.amp.GradScaler(enabled=amp) stopper, stop = EarlyStopping(patience=opt.patience), False compute_loss = ComputeLoss(model) callbacks.run('on_train_start') LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n' f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n' f"Logging results to {colorstr('bold', save_dir)}\n" f'Starting training for {epochs} epochs...') for epoch in range(start_epoch, epochs): callbacks.run('on_train_epoch_start') model.train()
if opt.image_weights: cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n)
mloss = torch.zeros(3, device=device) if RANK != -1: train_loader.sampler.set_epoch(epoch) pbar = enumerate(train_loader) LOGGER.info(('\n' + '%11s' * 7) % ('Epoch', 'GPU_mem', 'box_loss', 'obj_loss', 'cls_loss', 'Instances', 'Size')) if RANK in {-1, 0}: pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT) optimizer.zero_grad() for i, (imgs, targets, paths, _) in pbar: callbacks.run('on_train_batch_start') ni = i + nb * epoch imgs = imgs.to(device, non_blocking=True).float() / 255
if ni <= nw: xi = [0, nw] accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round()) for j, x in enumerate(optimizer.param_groups): x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)]) if 'momentum' in x: x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
if opt.multi_scale: sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs sf = sz / max(imgs.shape[2:]) if sf != 1: ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
with torch.cuda.amp.autocast(amp): pred = model(imgs) loss, loss_items = compute_loss(pred, targets.to(device)) if RANK != -1: loss *= WORLD_SIZE if opt.quad: loss *= 4.
scaler.scale(loss).backward()
if ni - last_opt_step >= accumulate: scaler.unscale_(optimizer) torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) scaler.step(optimizer) scaler.update() optimizer.zero_grad() if ema: ema.update(model) last_opt_step = ni
if RANK in {-1, 0}: mloss = (mloss * i + loss_items) / (i + 1) mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' pbar.set_description(('%11s' * 2 + '%11.4g' * 5) % (f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1])) callbacks.run('on_train_batch_end', model, ni, imgs, targets, paths, list(mloss)) if callbacks.stop_training: return
lr = [x['lr'] for x in optimizer.param_groups] scheduler.step()
if RANK in {-1, 0}: callbacks.run('on_train_epoch_end', epoch=epoch) ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights']) final_epoch = (epoch + 1 == epochs) or stopper.possible_stop if not noval or final_epoch: results, maps, _ = validate.run(data_dict, batch_size=batch_size // WORLD_SIZE * 2, imgsz=imgsz, half=amp, model=ema.ema, single_cls=single_cls, dataloader=val_loader, save_dir=save_dir, plots=False, callbacks=callbacks, compute_loss=compute_loss)
fi = fitness(np.array(results).reshape(1, -1)) stop = stopper(epoch=epoch, fitness=fi) if fi > best_fitness: best_fitness = fi log_vals = list(mloss) + list(results) + lr callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)
if (not nosave) or (final_epoch and not evolve): ckpt = { 'epoch': epoch, 'best_fitness': best_fitness, 'model': deepcopy(de_parallel(model)).half(), 'ema': deepcopy(ema.ema).half(), 'updates': ema.updates, 'optimizer': optimizer.state_dict(), 'opt': vars(opt), 'git': GIT_INFO, 'date': datetime.now().isoformat()}
torch.save(ckpt, last) if best_fitness == fi: torch.save(ckpt, best) if opt.save_period > 0 and epoch % opt.save_period == 0: torch.save(ckpt, w / f'epoch{epoch}.pt') del ckpt callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)
if RANK != -1: broadcast_list = [stop if RANK == 0 else None] dist.broadcast_object_list(broadcast_list, 0) if RANK != 0: stop = broadcast_list[0] if stop: break
if RANK in {-1, 0}: LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.') for f in last, best: if f.exists(): strip_optimizer(f) if f is best: LOGGER.info(f'\nValidating {f}...') results, _, _ = validate.run( data_dict, batch_size=batch_size // WORLD_SIZE * 2, imgsz=imgsz, model=attempt_load(f, device).half(), iou_thres=0.65 if is_coco else 0.60, single_cls=single_cls, dataloader=val_loader, save_dir=save_dir, save_json=is_coco, verbose=True, plots=plots, callbacks=callbacks, compute_loss=compute_loss) if is_coco: callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)
callbacks.run('on_train_end', last, best, epoch, results)
torch.cuda.empty_cache() return results
def parse_opt(known=False): parser = argparse.ArgumentParser() parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='初始 weights 路徑') parser.add_argument('--cfg', type=str, default='', help='model.yaml 路徑') parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml 路徑') parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters 路徑') parser.add_argument('--epochs', type=int, default=100, help='總訓練時期') parser.add_argument('--batch-size', type=int, default=16, help='所有 GPU 的總批次大小,-1 表示自動批次') parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val 圖像大小(像素)') parser.add_argument('--rect', action='store_true', help='矩形訓練') parser.add_argument('--resume', nargs='?', const=True, default=False, help='恢復最近的訓練') parser.add_argument('--nosave', action='store_true', help='只保存最後的檢查點') parser.add_argument('--noval', action='store_true', help='只驗證最終epoch') parser.add_argument('--noautoanchor', action='store_true', help='禁用自動錨點') parser.add_argument('--noplots', action='store_true', help='不保存繪圖文件') parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations') parser.add_argument('--bucket', type=str, default='', help='gsutil bucket') parser.add_argument('--cache', type=str, nargs='?', const='ram', help='圖像--緩存內存/磁盤') parser.add_argument('--image-weights', action='store_true', help='使用weighted圖像選擇進行訓練') parser.add_argument('--device', default='', help='cuda 設備,即 0 或 0,1,2,3 或 cpu') parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%') parser.add_argument('--single-cls', action='store_true', help='將多類數據訓練為單類') parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='優化器') parser.add_argument('--sync-bn', action='store_true', help='使用 SyncBatchNorm,僅在 DDP 模式下可用') parser.add_argument('--workers', type=int, default=8, help='最大數據加載器工作人員(在 DDP 模式下按 RANK)') parser.add_argument('--project', default=ROOT / 'runs/train', help='保存到項目/名稱') parser.add_argument('--name', default='exp', help='保存到項目/名稱') parser.add_argument('--exist-ok', action='store_true', help='現有項目/名稱OK,不要增加') parser.add_argument('--quad', action='store_true', help='quad dataloader') parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler') parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon') parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)') parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2') parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)') parser.add_argument('--seed', type=int, default=0, help='Global training seed') parser.add_argument('--local_rank', type=int, default=-1, help='自動 DDP Multi-GPU 參數,請勿修改')
parser.add_argument('--entity', default=None, help='實體') parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='上傳數據,“val”選項') parser.add_argument('--bbox_interval', type=int, default=-1, help='設置邊界框圖像記錄間隔') parser.add_argument('--artifact_alias', type=str, default='latest', help='要使用的數據集工件版本')
return parser.parse_known_args()[0] if known else parser.parse_args()
def main(opt, callbacks=Callbacks()): if RANK in {-1, 0}: print_args(vars(opt)) check_git_status() check_requirements()
if opt.resume and not check_comet_resume(opt) and not opt.evolve: last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run()) opt_yaml = last.parent.parent / 'opt.yaml' opt_data = opt.data if opt_yaml.is_file(): with open(opt_yaml, errors='ignore') as f: d = yaml.safe_load(f) else: d = torch.load(last, map_location='cpu')['opt'] opt = argparse.Namespace(**d) opt.cfg, opt.weights, opt.resume = '', str(last), True if is_url(opt_data): opt.data = check_file(opt_data) else: opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \ check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project) assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified' if opt.evolve: if opt.project == str(ROOT / 'runs/train'): opt.project = str(ROOT / 'runs/evolve') opt.exist_ok, opt.resume = opt.resume, False if opt.name == 'cfg': opt.name = Path(opt.cfg).stem opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
device = select_device(opt.device, batch_size=opt.batch_size) if LOCAL_RANK != -1: msg = 'is not compatible with YOLOv5 Multi-GPU DDP training' assert not opt.image_weights, f'--image-weights {msg}' assert not opt.evolve, f'--evolve {msg}' assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size' assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE' assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command' torch.cuda.set_device(LOCAL_RANK) device = torch.device('cuda', LOCAL_RANK) dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
if not opt.evolve: train(opt.hyp, opt, device, callbacks)
else: meta = { 'lr0': (1, 1e-5, 1e-1), 'lrf': (1, 0.01, 1.0), 'momentum': (0.3, 0.6, 0.98), 'weight_decay': (1, 0.0, 0.001), 'warmup_epochs': (1, 0.0, 5.0), 'warmup_momentum': (1, 0.0, 0.95), 'warmup_bias_lr': (1, 0.0, 0.2), 'box': (1, 0.02, 0.2), 'cls': (1, 0.2, 4.0), 'cls_pw': (1, 0.5, 2.0), 'obj': (1, 0.2, 4.0), 'obj_pw': (1, 0.5, 2.0), 'iou_t': (0, 0.1, 0.7), 'anchor_t': (1, 2.0, 8.0), 'anchors': (2, 2.0, 10.0), 'fl_gamma': (0, 0.0, 2.0), 'hsv_h': (1, 0.0, 0.1), 'hsv_s': (1, 0.0, 0.9), 'hsv_v': (1, 0.0, 0.9), 'degrees': (1, 0.0, 45.0), 'translate': (1, 0.0, 0.9), 'scale': (1, 0.0, 0.9), 'shear': (1, 0.0, 10.0), 'perspective': (0, 0.0, 0.001), 'flipud': (1, 0.0, 1.0), 'fliplr': (0, 0.0, 1.0), 'mosaic': (1, 0.0, 1.0), 'mixup': (1, 0.0, 1.0), 'copy_paste': (1, 0.0, 1.0)}
with open(opt.hyp, errors='ignore') as f: hyp = yaml.safe_load(f) if 'anchors' not in hyp: hyp['anchors'] = 3 if opt.noautoanchor: del hyp['anchors'], meta['anchors'] opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv' if opt.bucket: os.system(f'gsutil cp gs://{opt.bucket}/evolve.csv {evolve_csv}')
for _ in range(opt.evolve): if evolve_csv.exists(): parent = 'single' x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1) n = min(5, len(x)) x = x[np.argsort(-fitness(x))][:n] w = fitness(x) - fitness(x).min() + 1E-6 if parent == 'single' or len(x) == 1: x = x[random.choices(range(n), weights=w)[0]] elif parent == 'weighted': x = (x * w.reshape(n, 1)).sum(0) / w.sum()
mp, s = 0.8, 0.2 npr = np.random npr.seed(int(time.time())) g = np.array([meta[k][0] for k in hyp.keys()]) ng = len(meta) v = np.ones(ng) while all(v == 1): v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0) for i, k in enumerate(hyp.keys()): hyp[k] = float(x[i + 7] * v[i])
for k, v in meta.items(): hyp[k] = max(hyp[k], v[1]) hyp[k] = min(hyp[k], v[2]) hyp[k] = round(hyp[k], 5)
results = train(hyp.copy(), opt, device, callbacks) callbacks = Callbacks() keys = ('metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', 'val/box_loss', 'val/obj_loss', 'val/cls_loss') print_mutation(keys, results, hyp.copy(), save_dir, opt.bucket)
plot_evolve(evolve_csv) LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n' f"Results saved to {colorstr('bold', save_dir)}\n" f'Usage example: $ python train.py --hyp {evolve_yaml}')
def run(**kwargs): opt = parse_opt(True) for k, v in kwargs.items(): setattr(opt, k, v) main(opt) return opt
if __name__ == "__main__": opt = parse_opt() main(opt)
|