| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 
 | """
 在自定義數據集上訓練 YOLOv5 模型。
 從最新的 YOLOv5 版本自動下載模型和數據集。
 
 用法 - 單 GPU 訓練:
 $ python train.py --data coco128.yaml --weights yolov5s.pt --img 640  # from pretrained (recommended)
 $ python train.py --data coco128.yaml --weights '' --cfg yolov5s.yaml --img 640  # from scratch
 
 用法 - 多 GPU DDP 訓練:
 $ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 train.py --data coco128.yaml --weights yolov5s.pt --img 640 --device 0,1,2,3
 
 模型:     https://github.com/ultralytics/yolov5/tree/master/models
 數據集:   https://github.com/ultralytics/yolov5/tree/master/data
 教程:   https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data
 """
 
 import argparse
 import math
 import os
 import random
 import sys
 import time
 from copy import deepcopy
 from datetime import datetime
 from pathlib import Path
 
 import numpy as np
 import torch
 import torch.distributed as dist
 import torch.nn as nn
 import yaml
 from torch.optim import lr_scheduler
 from tqdm import tqdm
 
 FILE = Path(__file__).resolve()
 ROOT = FILE.parents[0]
 if str(ROOT) not in sys.path:
 sys.path.append(str(ROOT))
 ROOT = Path(os.path.relpath(ROOT, Path.cwd()))
 
 import val as validate
 from models.experimental import attempt_load
 from models.yolo import Model
 from utils.autoanchor import check_anchors
 from utils.autobatch import check_train_batch_size
 from utils.callbacks import Callbacks
 from utils.dataloaders import create_dataloader
 from utils.downloads import attempt_download, is_url
 from utils.general import (LOGGER, TQDM_BAR_FORMAT, check_amp, check_dataset, check_file, check_git_info,
 check_git_status, check_img_size, check_requirements, check_suffix, check_yaml, colorstr,
 get_latest_run, increment_path, init_seeds, intersect_dicts, labels_to_class_weights,
 labels_to_image_weights, methods, one_cycle, print_args, print_mutation, strip_optimizer,
 yaml_save)
 from utils.loggers import Loggers
 from utils.loggers.comet.comet_utils import check_comet_resume
 from utils.loss import ComputeLoss
 from utils.metrics import fitness
 from utils.plots import plot_evolve
 from utils.torch_utils import (EarlyStopping, ModelEMA, de_parallel, select_device, smart_DDP, smart_optimizer,
 smart_resume, torch_distributed_zero_first)
 
 LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1))
 RANK = int(os.getenv('RANK', -1))
 WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
 GIT_INFO = check_git_info()
 
 
 def train(hyp, opt, device, callbacks):
 save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \
 Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
 opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze
 callbacks.run('on_pretrain_routine_start')
 
 
 w = save_dir / 'weights'
 (w.parent if evolve else w).mkdir(parents=True, exist_ok=True)
 last, best = w / 'last.pt', w / 'best.pt'
 
 
 if isinstance(hyp, str):
 with open(hyp, errors='ignore') as f:
 hyp = yaml.safe_load(f)
 LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
 opt.hyp = hyp.copy()
 
 
 if not evolve:
 yaml_save(save_dir / 'hyp.yaml', hyp)
 yaml_save(save_dir / 'opt.yaml', vars(opt))
 
 
 data_dict = None
 if RANK in {-1, 0}:
 loggers = Loggers(save_dir, weights, opt, hyp, LOGGER)
 
 
 for k in methods(loggers):
 callbacks.register_action(k, callback=getattr(loggers, k))
 
 
 data_dict = loggers.remote_dataset
 if resume:
 weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size
 
 
 plots = not evolve and not opt.noplots
 cuda = device.type != 'cpu'
 init_seeds(opt.seed + 1 + RANK, deterministic=True)
 with torch_distributed_zero_first(LOCAL_RANK):
 data_dict = data_dict or check_dataset(data)
 train_path, val_path = data_dict['train'], data_dict['val']
 nc = 1 if single_cls else int(data_dict['nc'])
 names = {0: 'item'} if single_cls and len(data_dict['names']) != 1 else data_dict['names']
 is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt')
 
 
 check_suffix(weights, '.pt')
 pretrained = weights.endswith('.pt')
 if pretrained:
 with torch_distributed_zero_first(LOCAL_RANK):
 weights = attempt_download(weights)
 ckpt = torch.load(weights, map_location='cpu')
 model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)
 exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else []
 csd = ckpt['model'].float().state_dict()
 csd = intersect_dicts(csd, model.state_dict(), exclude=exclude)
 model.load_state_dict(csd, strict=False)
 LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}')
 else:
 model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)
 amp = check_amp(model)
 
 
 freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))]
 for k, v in model.named_parameters():
 v.requires_grad = True
 
 if any(x in k for x in freeze):
 LOGGER.info(f'freezing {k}')
 v.requires_grad = False
 
 
 gs = max(int(model.stride.max()), 32)
 imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2)
 
 
 if RANK == -1 and batch_size == -1:
 batch_size = check_train_batch_size(model, imgsz, amp)
 loggers.on_params_update({"batch_size": batch_size})
 
 
 nbs = 64
 accumulate = max(round(nbs / batch_size), 1)
 hyp['weight_decay'] *= batch_size * accumulate / nbs
 optimizer = smart_optimizer(model, opt.optimizer, hyp['lr0'], hyp['momentum'], hyp['weight_decay'])
 
 
 if opt.cos_lr:
 lf = one_cycle(1, hyp['lrf'], epochs)
 else:
 lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf']
 scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
 
 
 ema = ModelEMA(model) if RANK in {-1, 0} else None
 
 
 best_fitness, start_epoch = 0.0, 0
 if pretrained:
 if resume:
 best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume)
 del ckpt, csd
 
 
 if cuda and RANK == -1 and torch.cuda.device_count() > 1:
 LOGGER.warning('WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n'
 'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.')
 model = torch.nn.DataParallel(model)
 
 
 if opt.sync_bn and cuda and RANK != -1:
 model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
 LOGGER.info('Using SyncBatchNorm()')
 
 
 train_loader, dataset = create_dataloader(train_path,
 imgsz,
 batch_size // WORLD_SIZE,
 gs,
 single_cls,
 hyp=hyp,
 augment=True,
 cache=None if opt.cache == 'val' else opt.cache,
 rect=opt.rect,
 rank=LOCAL_RANK,
 workers=workers,
 image_weights=opt.image_weights,
 quad=opt.quad,
 prefix=colorstr('train: '),
 shuffle=True)
 labels = np.concatenate(dataset.labels, 0)
 mlc = int(labels[:, 0].max())
 assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'
 
 
 if RANK in {-1, 0}:
 val_loader = create_dataloader(val_path,
 imgsz,
 batch_size // WORLD_SIZE * 2,
 gs,
 single_cls,
 hyp=hyp,
 cache=None if noval else opt.cache,
 rect=True,
 rank=-1,
 workers=workers * 2,
 pad=0.5,
 prefix=colorstr('val: '))[0]
 
 if not resume:
 if not opt.noautoanchor:
 check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
 model.half().float()
 
 callbacks.run('on_pretrain_routine_end', labels, names)
 
 
 if cuda and RANK != -1:
 model = smart_DDP(model)
 
 
 nl = de_parallel(model).model[-1].nl
 hyp['box'] *= 3 / nl
 hyp['cls'] *= nc / 80 * 3 / nl
 hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl
 hyp['label_smoothing'] = opt.label_smoothing
 model.nc = nc
 model.hyp = hyp
 model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc
 model.names = names
 
 
 t0 = time.time()
 nb = len(train_loader)
 nw = max(round(hyp['warmup_epochs'] * nb), 100)
 
 last_opt_step = -1
 maps = np.zeros(nc)
 results = (0, 0, 0, 0, 0, 0, 0)
 scheduler.last_epoch = start_epoch - 1
 scaler = torch.cuda.amp.GradScaler(enabled=amp)
 stopper, stop = EarlyStopping(patience=opt.patience), False
 compute_loss = ComputeLoss(model)
 callbacks.run('on_train_start')
 LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
 f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
 f"Logging results to {colorstr('bold', save_dir)}\n"
 f'Starting training for {epochs} epochs...')
 for epoch in range(start_epoch, epochs):
 callbacks.run('on_train_epoch_start')
 model.train()
 
 
 if opt.image_weights:
 cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc
 iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw)
 dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n)
 
 
 
 
 
 mloss = torch.zeros(3, device=device)
 if RANK != -1:
 train_loader.sampler.set_epoch(epoch)
 pbar = enumerate(train_loader)
 LOGGER.info(('\n' + '%11s' * 7) % ('Epoch', 'GPU_mem', 'box_loss', 'obj_loss', 'cls_loss', 'Instances', 'Size'))
 if RANK in {-1, 0}:
 pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT)
 optimizer.zero_grad()
 for i, (imgs, targets, paths, _) in pbar:
 callbacks.run('on_train_batch_start')
 ni = i + nb * epoch
 imgs = imgs.to(device, non_blocking=True).float() / 255
 
 
 if ni <= nw:
 xi = [0, nw]
 
 accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
 for j, x in enumerate(optimizer.param_groups):
 
 x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)])
 if 'momentum' in x:
 x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
 
 
 if opt.multi_scale:
 sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs
 sf = sz / max(imgs.shape[2:])
 if sf != 1:
 ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]
 imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
 
 
 with torch.cuda.amp.autocast(amp):
 pred = model(imgs)
 loss, loss_items = compute_loss(pred, targets.to(device))
 if RANK != -1:
 loss *= WORLD_SIZE
 if opt.quad:
 loss *= 4.
 
 
 scaler.scale(loss).backward()
 
 
 if ni - last_opt_step >= accumulate:
 scaler.unscale_(optimizer)
 torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0)
 scaler.step(optimizer)
 scaler.update()
 optimizer.zero_grad()
 if ema:
 ema.update(model)
 last_opt_step = ni
 
 
 if RANK in {-1, 0}:
 mloss = (mloss * i + loss_items) / (i + 1)
 mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G'
 pbar.set_description(('%11s' * 2 + '%11.4g' * 5) %
 (f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
 callbacks.run('on_train_batch_end', model, ni, imgs, targets, paths, list(mloss))
 if callbacks.stop_training:
 return
 
 
 
 lr = [x['lr'] for x in optimizer.param_groups]
 scheduler.step()
 
 if RANK in {-1, 0}:
 
 callbacks.run('on_train_epoch_end', epoch=epoch)
 ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
 final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
 if not noval or final_epoch:
 results, maps, _ = validate.run(data_dict,
 batch_size=batch_size // WORLD_SIZE * 2,
 imgsz=imgsz,
 half=amp,
 model=ema.ema,
 single_cls=single_cls,
 dataloader=val_loader,
 save_dir=save_dir,
 plots=False,
 callbacks=callbacks,
 compute_loss=compute_loss)
 
 
 fi = fitness(np.array(results).reshape(1, -1))
 stop = stopper(epoch=epoch, fitness=fi)
 if fi > best_fitness:
 best_fitness = fi
 log_vals = list(mloss) + list(results) + lr
 callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)
 
 
 if (not nosave) or (final_epoch and not evolve):
 ckpt = {
 'epoch': epoch,
 'best_fitness': best_fitness,
 'model': deepcopy(de_parallel(model)).half(),
 'ema': deepcopy(ema.ema).half(),
 'updates': ema.updates,
 'optimizer': optimizer.state_dict(),
 'opt': vars(opt),
 'git': GIT_INFO,
 'date': datetime.now().isoformat()}
 
 
 torch.save(ckpt, last)
 if best_fitness == fi:
 torch.save(ckpt, best)
 if opt.save_period > 0 and epoch % opt.save_period == 0:
 torch.save(ckpt, w / f'epoch{epoch}.pt')
 del ckpt
 callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)
 
 
 if RANK != -1:
 broadcast_list = [stop if RANK == 0 else None]
 dist.broadcast_object_list(broadcast_list, 0)
 if RANK != 0:
 stop = broadcast_list[0]
 if stop:
 break
 
 
 
 if RANK in {-1, 0}:
 LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
 for f in last, best:
 if f.exists():
 strip_optimizer(f)
 if f is best:
 LOGGER.info(f'\nValidating {f}...')
 results, _, _ = validate.run(
 data_dict,
 batch_size=batch_size // WORLD_SIZE * 2,
 imgsz=imgsz,
 model=attempt_load(f, device).half(),
 iou_thres=0.65 if is_coco else 0.60,
 single_cls=single_cls,
 dataloader=val_loader,
 save_dir=save_dir,
 save_json=is_coco,
 verbose=True,
 plots=plots,
 callbacks=callbacks,
 compute_loss=compute_loss)
 if is_coco:
 callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)
 
 callbacks.run('on_train_end', last, best, epoch, results)
 
 torch.cuda.empty_cache()
 return results
 
 
 def parse_opt(known=False):
 parser = argparse.ArgumentParser()
 parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='初始 weights 路徑')
 parser.add_argument('--cfg', type=str, default='', help='model.yaml 路徑')
 parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml 路徑')
 parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters 路徑')
 parser.add_argument('--epochs', type=int, default=100, help='總訓練時期')
 parser.add_argument('--batch-size', type=int, default=16, help='所有 GPU 的總批次大小,-1 表示自動批次')
 parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val 圖像大小(像素)')
 parser.add_argument('--rect', action='store_true', help='矩形訓練')
 parser.add_argument('--resume', nargs='?', const=True, default=False, help='恢復最近的訓練')
 parser.add_argument('--nosave', action='store_true', help='只保存最後的檢查點')
 parser.add_argument('--noval', action='store_true', help='只驗證最終epoch')
 parser.add_argument('--noautoanchor', action='store_true', help='禁用自動錨點')
 parser.add_argument('--noplots', action='store_true', help='不保存繪圖文件')
 parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
 parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
 parser.add_argument('--cache', type=str, nargs='?', const='ram', help='圖像--緩存內存/磁盤')
 parser.add_argument('--image-weights', action='store_true', help='使用weighted圖像選擇進行訓練')
 parser.add_argument('--device', default='', help='cuda 設備,即 0 或 0,1,2,3 或 cpu')
 parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
 parser.add_argument('--single-cls', action='store_true', help='將多類數據訓練為單類')
 parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='優化器')
 parser.add_argument('--sync-bn', action='store_true', help='使用 SyncBatchNorm,僅在 DDP 模式下可用')
 parser.add_argument('--workers', type=int, default=8, help='最大數據加載器工作人員(在 DDP 模式下按 RANK)')
 parser.add_argument('--project', default=ROOT / 'runs/train', help='保存到項目/名稱')
 parser.add_argument('--name', default='exp', help='保存到項目/名稱')
 parser.add_argument('--exist-ok', action='store_true', help='現有項目/名稱OK,不要增加')
 parser.add_argument('--quad', action='store_true', help='quad dataloader')
 parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
 parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
 parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
 parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
 parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
 parser.add_argument('--seed', type=int, default=0, help='Global training seed')
 parser.add_argument('--local_rank', type=int, default=-1, help='自動 DDP Multi-GPU 參數,請勿修改')
 
 
 parser.add_argument('--entity', default=None, help='實體')
 parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='上傳數據,“val”選項')
 parser.add_argument('--bbox_interval', type=int, default=-1, help='設置邊界框圖像記錄間隔')
 parser.add_argument('--artifact_alias', type=str, default='latest', help='要使用的數據集工件版本')
 
 return parser.parse_known_args()[0] if known else parser.parse_args()
 
 
 def main(opt, callbacks=Callbacks()):
 
 if RANK in {-1, 0}:
 print_args(vars(opt))
 check_git_status()
 check_requirements()
 
 
 if opt.resume and not check_comet_resume(opt) and not opt.evolve:
 last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run())
 opt_yaml = last.parent.parent / 'opt.yaml'
 opt_data = opt.data
 if opt_yaml.is_file():
 with open(opt_yaml, errors='ignore') as f:
 d = yaml.safe_load(f)
 else:
 d = torch.load(last, map_location='cpu')['opt']
 opt = argparse.Namespace(**d)
 opt.cfg, opt.weights, opt.resume = '', str(last), True
 if is_url(opt_data):
 opt.data = check_file(opt_data)
 else:
 opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \
 check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project)
 assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
 if opt.evolve:
 if opt.project == str(ROOT / 'runs/train'):
 opt.project = str(ROOT / 'runs/evolve')
 opt.exist_ok, opt.resume = opt.resume, False
 if opt.name == 'cfg':
 opt.name = Path(opt.cfg).stem
 opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
 
 
 device = select_device(opt.device, batch_size=opt.batch_size)
 if LOCAL_RANK != -1:
 msg = 'is not compatible with YOLOv5 Multi-GPU DDP training'
 assert not opt.image_weights, f'--image-weights {msg}'
 assert not opt.evolve, f'--evolve {msg}'
 assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size'
 assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE'
 assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
 torch.cuda.set_device(LOCAL_RANK)
 device = torch.device('cuda', LOCAL_RANK)
 dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
 
 
 if not opt.evolve:
 train(opt.hyp, opt, device, callbacks)
 
 
 else:
 
 meta = {
 'lr0': (1, 1e-5, 1e-1),
 'lrf': (1, 0.01, 1.0),
 'momentum': (0.3, 0.6, 0.98),
 'weight_decay': (1, 0.0, 0.001),
 'warmup_epochs': (1, 0.0, 5.0),
 'warmup_momentum': (1, 0.0, 0.95),
 'warmup_bias_lr': (1, 0.0, 0.2),
 'box': (1, 0.02, 0.2),
 'cls': (1, 0.2, 4.0),
 'cls_pw': (1, 0.5, 2.0),
 'obj': (1, 0.2, 4.0),
 'obj_pw': (1, 0.5, 2.0),
 'iou_t': (0, 0.1, 0.7),
 'anchor_t': (1, 2.0, 8.0),
 'anchors': (2, 2.0, 10.0),
 'fl_gamma': (0, 0.0, 2.0),
 'hsv_h': (1, 0.0, 0.1),
 'hsv_s': (1, 0.0, 0.9),
 'hsv_v': (1, 0.0, 0.9),
 'degrees': (1, 0.0, 45.0),
 'translate': (1, 0.0, 0.9),
 'scale': (1, 0.0, 0.9),
 'shear': (1, 0.0, 10.0),
 'perspective': (0, 0.0, 0.001),
 'flipud': (1, 0.0, 1.0),
 'fliplr': (0, 0.0, 1.0),
 'mosaic': (1, 0.0, 1.0),
 'mixup': (1, 0.0, 1.0),
 'copy_paste': (1, 0.0, 1.0)}
 
 with open(opt.hyp, errors='ignore') as f:
 hyp = yaml.safe_load(f)
 if 'anchors' not in hyp:
 hyp['anchors'] = 3
 if opt.noautoanchor:
 del hyp['anchors'], meta['anchors']
 opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir)
 
 evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv'
 if opt.bucket:
 os.system(f'gsutil cp gs://{opt.bucket}/evolve.csv {evolve_csv}')
 
 for _ in range(opt.evolve):
 if evolve_csv.exists():
 
 parent = 'single'
 x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1)
 n = min(5, len(x))
 x = x[np.argsort(-fitness(x))][:n]
 w = fitness(x) - fitness(x).min() + 1E-6
 if parent == 'single' or len(x) == 1:
 
 x = x[random.choices(range(n), weights=w)[0]]
 elif parent == 'weighted':
 x = (x * w.reshape(n, 1)).sum(0) / w.sum()
 
 
 mp, s = 0.8, 0.2
 npr = np.random
 npr.seed(int(time.time()))
 g = np.array([meta[k][0] for k in hyp.keys()])
 ng = len(meta)
 v = np.ones(ng)
 while all(v == 1):
 v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
 for i, k in enumerate(hyp.keys()):
 hyp[k] = float(x[i + 7] * v[i])
 
 
 for k, v in meta.items():
 hyp[k] = max(hyp[k], v[1])
 hyp[k] = min(hyp[k], v[2])
 hyp[k] = round(hyp[k], 5)
 
 
 results = train(hyp.copy(), opt, device, callbacks)
 callbacks = Callbacks()
 
 keys = ('metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', 'val/box_loss',
 'val/obj_loss', 'val/cls_loss')
 print_mutation(keys, results, hyp.copy(), save_dir, opt.bucket)
 
 
 plot_evolve(evolve_csv)
 LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n'
 f"Results saved to {colorstr('bold', save_dir)}\n"
 f'Usage example: $ python train.py --hyp {evolve_yaml}')
 
 
 def run(**kwargs):
 
 opt = parse_opt(True)
 for k, v in kwargs.items():
 setattr(opt, k, v)
 main(opt)
 return opt
 
 
 if __name__ == "__main__":
 opt = parse_opt()
 main(opt)
 
 |