永成的學習部落格

這裡會記錄永成學習的一部分

0%

YOLOv5 的 使用紀錄

YOLOv5 永成紀錄學習的地方!

YOLOv7 使用工業相機時會出現以下報錯:1/1: 0... success (640x480 at 0.00 FPS).0.00 FPS表示無法即時更新畫面。
YOLOv5YOLOv7 的使用指令代碼類似,由於 YOLOv7 無法用工業相機即時辨識,所以我改用 YOLOv5 來做之後的研究。

YOLOv5-ultralytics-Githubhttps://github.com/ultralytics/yolov5Chinese 中文簡體說明
(若有新的了解,會持續更新~)

⬇⬇⬇文章開始⬇⬇⬇

開始

建立YOLOv5環境

  1. 建立 Python 新環境

    1
    conda create -n yolov5-py3.9 python=3.9.13
    1
    conda activate yolov5-py3.9
  2. YOLOv5 的 Github 下載:https://github.com/ultralytics/yolov5

  3. 解壓縮第2步驟下載的yolov5-master.zip的檔案

  4. 由於YOLO各版本都會有提供安裝模組清單,cd 至 yolov5-master 的資料夾,就可以安裝 YOLOv5 所需套件

    (點擊展開)如果有報錯 `warning: ignore distutils configs in setup.cfg due to encoding errors.` 解決辦法:
    1
    pip install -r requirements.txt
  5. 開啟Anaconda Navigator,切換環境到剛剛建立的yolov5
    Anaconda Navigator

  6. 在上個步驟的Anaconda Navigator介面下安裝:

  • NotebookCMD.exe Prompt
    (若有其他需要,可在安裝其它的軟件)

  1. 安裝Pytorch-cuda,官網:https://pytorch.org/
    Pytorch官網歷史版本:https://pytorch.org/get-started/previous-versions/
    我選擇安裝最新版Stable (1.13.1)的Pytorch版本。

  • 安裝指令:
    1
    conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia
  • 示意圖:
  1. 這樣 YOLOv5 的環境就建立完成了!

  2. 以下是我個人需要安裝的包,在這做個紀錄。

    1
    pip install PyQt5
    1
    pip install pyqt5-tools
    1
    pip install eventlet
    1
    pip install chardet
  • 備註:

    QT5 Designer中文使用介面位置:

    1
    C:\Users\使用者\anaconda3\envs\環境名稱\Lib\site-packages\qt5_applications\Qt\bin\`designer.exe`

使用labelimg框圖片建立樣本

1
pip install labelimg
  • 執行時,在Anaconda Prompt (yolov5)上輸入labelimg,會跳出以下畫面:
    1
    labelimg

    示意圖


建立新增AI辨識的圖片樣本

利用工業相機拍攝影片,將影片的每一幀數的畫面擷取成照片,每一張以名稱+編號數字存在影像資料夾。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import cv2
import os
import shutil

a=input("請輸入資料夾名稱(請以英文命名):")
b=input("請輸入張數:")
enter=int(b)
# ----------
# 開啟攝像頭
cap = cv2.VideoCapture(0) # 選擇運行攝影機(預設為0)
# 視訊大小設定,獲取幀寬度,獲取幀高度
sz = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
fps = 30
# 輸出格式
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
# open and set props
vout = cv2.VideoWriter()
vout.open(a+'.mp4', fourcc, fps, sz, True)

cnt = 1
while cnt <= enter:
_, frame = cap.read()
# putText輸出到視訊上,各引數依次是:照片/新增的文字/左上角座標/字型/字型大小/顏色/字型粗細
cv2.putText(frame, str(cnt), (10, 20), cv2.FONT_HERSHEY_PLAIN, 1, (0, 255, 0), 1, cv2.LINE_AA)
vout.write(frame)
cnt += 1

cv2.imshow('vidio', frame)
cv2.waitKey(30)

vout.release()
cap.release()
# ----------------------------------------
video_path = a+'.mp4'
output_folder = './'+a+'/'

if os.path.isdir(output_folder):
print("刪除資料夾: {}".format(output_folder))
shutil.rmtree(output_folder)

os.mkdir(output_folder)
print("新建資料夾: {}".format(output_folder))
# ----------------------------------------
# 建立圖片
vc = cv2.VideoCapture(video_path)
fps = vc.get(cv2.CAP_PROP_FPS)
frame_count = int(vc.get(cv2.CAP_PROP_FRAME_COUNT))
#print(frame_count)
video = []

for idx in range(frame_count):
vc.set(1, idx)
ret, frame = vc.read()
height, width, layers = frame.shape
size = (width, height)

if frame is not None:
file_name = '{}{}{:04d}.jpg'.format(output_folder,a,idx+1)
cv2.imwrite(file_name, frame)

print("\rprocess: {}/{}".format(idx+1 , frame_count), end = '')
vc.release()
# ----------------------------------------
# 移動影片到資料夾
shutil.move(str(a)+'.mp4',str(a))

參考:【OpenCV】OpenCV 利用 python OpenCV 將一部影片拆成一張張圖片 sample code (內附程式碼) get images from video
詳閱:【永成的學習部落格】使用相機攝影截圖取AI辨識樣本
這一篇是我過去所寫的一篇文章。


訓練&驗證圖片

將要辨識的圖片庫,分為兩大類:

  1. 訓練模型
    圖片越多越好,但相對的訓練時間會越久。
    將訓練圖案放在.\yolov5-master\data\train裡面
  • 示意圖:




  1. 驗證模型
    圖片至少為20張以上。
    將訓練圖案放在.\yolov5-master\data\val裡面
  • 示意圖:




通常訓練和驗證的張數比例,大概為 7:38:2


框好的圖片【訓練】

訓練自定義數據

YOLOv5 模型必須在標記數據上進行訓練,以便學習該數據中的對像類別。

  1. .\yolov5-master\data\coco.yaml的檔案複製,將檔名取為custom_data.yaml,然後編輯檔案:

    1
    2
    3
    4
    5
    6
    7
    8
    train: ./data/train  # 訓練的圖片&labels的資料夾索引
    val: ./data/val # 驗證的圖片&labels的資料夾索引

    # number of classes # 數字為訓練圖片類別的數量
    nc: 1

    # class names
    names: [ 'bad' ] # 類別名稱的設置
  2. .\yolov5-master\models\yolov5s.yaml的檔案複製,將檔名取為yolov5s-custom.yaml,然後編輯檔案:

    1
    2
    3
    4
    # parameters
    nc: 1 # number of classes # 數字為訓練圖片類別的數量
    depth_multiple: 0.33 # model depth multiple # 模型深度倍數
    width_multiple: 0.25 # layer channel multiple # 層通道多
  3. YOLOv5-GithubReleases地方下載兩個檔案(yolov5s.ptyolov5s.pt),將檔案存放在.\yolov5-master\weights目錄下:

    示意圖(點擊展開) 解決辦法:

    (如果沒有.\yolov5-master\weights目錄,請自行建立一個weights目錄)
    下載連結:https://github.com/ultralytics/yolov5/releases/tag/v7.0


選擇型號

選擇一個預訓練模型開始訓練。在這裡,我們選擇YOLOv5s,第二小和最快的可用模型。
請參閱README表,了解所有型號的完整比較。

開始訓練

1
python train.py --workers 1 --device 0 --imgsz 640 --data data/custom_data.yaml --hyp data/hyps/hyp.scratch-low.yaml --cfg models/yolov5s-custom.yaml --weights weights/yolov5s.pt --name train-run --project runs/train --batch-size 16 --epochs 300

epochs
從300個epoch開始。如果過早過擬合,那麼可以減少epochs。
如果在300個epoch後沒有發生過擬合,則訓練更長時間,即 600、1200 個等epoch。
batch size
使用自己的硬件資源允許的最大Batch size。小的Batch size會產生較差的batchnorm統計,應該避免。
超參數
默認超參數位於hpy.scratch.yaml中。建議先使用默認超參數進行訓練,然後再考慮修改任何參數。
一般來說,增加augmentation超參數將減少和延遲過度擬合,從而允許更長的訓練時間和更高的最終mAP。
減少loss component gain 超參數(如hyp[‘obj’])將有助於減少對特定loss component的過度擬合。

  • 若訓練完之後,將最新的.\runs\train的目錄下,
    yolov5s-train最新資料夾之.\weights\best.pt的檔案複製到主目錄.\yolov5-master之下!

    這樣才能往下一個 detect (檢測) 步驟!!!因為 detect (檢測) 需要讀取訓練完後的 best.pt 檔案。

  • 如示意圖:

    --weights:初始weights路徑。ex:--weights yolov5s.pt
    --cfg:model.yaml路徑。 ex:--cfg cfg/training/yolov5s-custom.yaml
    --data:data.yaml路徑。ex:--data data/custom_data.yaml
    --hyp:hyperparameters路徑。ex:--hyp data/hyp.scratch.custom.yaml
    --epochs:訓練回合,預設為100回合。ex:--epochs 200
    --batch-size:預設=16, 所有 GPU 的總批大小。ex:--batch-size 11
    --img-size:[訓練, 測試] 圖片大小,預設為【640,640】。ex:--img 640 640
    --workers:訓練資料讀取工作的最大數量。ex:--workers 1
    --name:將訓練結果資料夾名稱命名。ex:--name yolov5s-train
    --project:將訓練結果保存到自訂資料夾。ex:--project runs/train
    --device :預設0,可調整0,1,2,3 or cpu。ex:--device 0

    • (查看更多指令說明):

      Anaconda Prompt (yolov5) 上輸入:

      1
      python train.py -h

      ● 訓練過程,請耐心等候~

train.py

train.py 中文修改補充(點擊展開)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
在自定義數據集上訓練 YOLOv5 模型。
從最新的 YOLOv5 版本自動下載模型和數據集。

用法 - 單 GPU 訓練:
$ python train.py --data coco128.yaml --weights yolov5s.pt --img 640 # from pretrained (recommended)
$ python train.py --data coco128.yaml --weights '' --cfg yolov5s.yaml --img 640 # from scratch

用法 - 多 GPU DDP 訓練:
$ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 train.py --data coco128.yaml --weights yolov5s.pt --img 640 --device 0,1,2,3

模型: https://github.com/ultralytics/yolov5/tree/master/models
數據集: https://github.com/ultralytics/yolov5/tree/master/data
教程: https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data
"""

import argparse
import math
import os
import random
import sys
import time
from copy import deepcopy
from datetime import datetime
from pathlib import Path

import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
import yaml
from torch.optim import lr_scheduler
from tqdm import tqdm

FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative

import val as validate # for end-of-epoch mAP
from models.experimental import attempt_load
from models.yolo import Model
from utils.autoanchor import check_anchors
from utils.autobatch import check_train_batch_size
from utils.callbacks import Callbacks
from utils.dataloaders import create_dataloader
from utils.downloads import attempt_download, is_url
from utils.general import (LOGGER, TQDM_BAR_FORMAT, check_amp, check_dataset, check_file, check_git_info,
check_git_status, check_img_size, check_requirements, check_suffix, check_yaml, colorstr,
get_latest_run, increment_path, init_seeds, intersect_dicts, labels_to_class_weights,
labels_to_image_weights, methods, one_cycle, print_args, print_mutation, strip_optimizer,
yaml_save)
from utils.loggers import Loggers
from utils.loggers.comet.comet_utils import check_comet_resume
from utils.loss import ComputeLoss
from utils.metrics import fitness
from utils.plots import plot_evolve
from utils.torch_utils import (EarlyStopping, ModelEMA, de_parallel, select_device, smart_DDP, smart_optimizer,
smart_resume, torch_distributed_zero_first)

LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
RANK = int(os.getenv('RANK', -1))
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
GIT_INFO = check_git_info()


def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictionary
save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \
Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze
callbacks.run('on_pretrain_routine_start')

# Directories
w = save_dir / 'weights' # weights dir
(w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir
last, best = w / 'last.pt', w / 'best.pt'

# Hyperparameters
if isinstance(hyp, str):
with open(hyp, errors='ignore') as f:
hyp = yaml.safe_load(f) # load hyps dict
LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
opt.hyp = hyp.copy() # for saving hyps to checkpoints

# Save run settings
if not evolve:
yaml_save(save_dir / 'hyp.yaml', hyp)
yaml_save(save_dir / 'opt.yaml', vars(opt))

# Loggers
data_dict = None
if RANK in {-1, 0}:
loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance

# Register actions
for k in methods(loggers):
callbacks.register_action(k, callback=getattr(loggers, k))

# Process custom dataset artifact link
data_dict = loggers.remote_dataset
if resume: # If resuming runs from remote artifact
weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size

# Config
plots = not evolve and not opt.noplots # create plots
cuda = device.type != 'cpu'
init_seeds(opt.seed + 1 + RANK, deterministic=True)
with torch_distributed_zero_first(LOCAL_RANK):
data_dict = data_dict or check_dataset(data) # check if None
train_path, val_path = data_dict['train'], data_dict['val']
nc = 1 if single_cls else int(data_dict['nc']) # number of classes
names = {0: 'item'} if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt') # COCO dataset

# Model
check_suffix(weights, '.pt') # check weights
pretrained = weights.endswith('.pt')
if pretrained:
with torch_distributed_zero_first(LOCAL_RANK):
weights = attempt_download(weights) # download if not found locally
ckpt = torch.load(weights, map_location='cpu') # load checkpoint to CPU to avoid CUDA memory leak
model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect
model.load_state_dict(csd, strict=False) # load
LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report
else:
model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
amp = check_amp(model) # check AMP

# Freeze
freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # layers to freeze
for k, v in model.named_parameters():
v.requires_grad = True # train all layers
# v.register_hook(lambda x: torch.nan_to_num(x)) # NaN to 0 (commented for erratic training results)
if any(x in k for x in freeze):
LOGGER.info(f'freezing {k}')
v.requires_grad = False

# Image size
gs = max(int(model.stride.max()), 32) # grid size (max stride)
imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple

# Batch size
if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size
batch_size = check_train_batch_size(model, imgsz, amp)
loggers.on_params_update({"batch_size": batch_size})

# Optimizer
nbs = 64 # nominal batch size
accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay
optimizer = smart_optimizer(model, opt.optimizer, hyp['lr0'], hyp['momentum'], hyp['weight_decay'])

# Scheduler
if opt.cos_lr:
lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
else:
lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs)

# EMA
ema = ModelEMA(model) if RANK in {-1, 0} else None

# Resume
best_fitness, start_epoch = 0.0, 0
if pretrained:
if resume:
best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume)
del ckpt, csd

# DP mode
if cuda and RANK == -1 and torch.cuda.device_count() > 1:
LOGGER.warning('WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n'
'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.')
model = torch.nn.DataParallel(model)

# SyncBatchNorm
if opt.sync_bn and cuda and RANK != -1:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
LOGGER.info('Using SyncBatchNorm()')

# Trainloader
train_loader, dataset = create_dataloader(train_path,
imgsz,
batch_size // WORLD_SIZE,
gs,
single_cls,
hyp=hyp,
augment=True,
cache=None if opt.cache == 'val' else opt.cache,
rect=opt.rect,
rank=LOCAL_RANK,
workers=workers,
image_weights=opt.image_weights,
quad=opt.quad,
prefix=colorstr('train: '),
shuffle=True)
labels = np.concatenate(dataset.labels, 0)
mlc = int(labels[:, 0].max()) # max label class
assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'

# Process 0
if RANK in {-1, 0}:
val_loader = create_dataloader(val_path,
imgsz,
batch_size // WORLD_SIZE * 2,
gs,
single_cls,
hyp=hyp,
cache=None if noval else opt.cache,
rect=True,
rank=-1,
workers=workers * 2,
pad=0.5,
prefix=colorstr('val: '))[0]

if not resume:
if not opt.noautoanchor:
check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) # run AutoAnchor
model.half().float() # pre-reduce anchor precision

callbacks.run('on_pretrain_routine_end', labels, names)

# DDP mode
if cuda and RANK != -1:
model = smart_DDP(model)

# Model attributes
nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps)
hyp['box'] *= 3 / nl # scale to layers
hyp['cls'] *= nc / 80 * 3 / nl # scale to classes and layers
hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layers
hyp['label_smoothing'] = opt.label_smoothing
model.nc = nc # attach number of classes to model
model.hyp = hyp # attach hyperparameters to model
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
model.names = names

# Start training
t0 = time.time()
nb = len(train_loader) # number of batches
nw = max(round(hyp['warmup_epochs'] * nb), 100) # number of warmup iterations, max(3 epochs, 100 iterations)
# nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
last_opt_step = -1
maps = np.zeros(nc) # mAP per class
results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
scheduler.last_epoch = start_epoch - 1 # do not move
scaler = torch.cuda.amp.GradScaler(enabled=amp)
stopper, stop = EarlyStopping(patience=opt.patience), False
compute_loss = ComputeLoss(model) # init loss class
callbacks.run('on_train_start')
LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
f"Logging results to {colorstr('bold', save_dir)}\n"
f'Starting training for {epochs} epochs...')
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
callbacks.run('on_train_epoch_start')
model.train()

# Update image weights (optional, single-GPU only)
if opt.image_weights:
cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx

# Update mosaic border (optional)
# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
# dataset.mosaic_border = [b - imgsz, -b] # height, width borders

mloss = torch.zeros(3, device=device) # mean losses
if RANK != -1:
train_loader.sampler.set_epoch(epoch)
pbar = enumerate(train_loader)
LOGGER.info(('\n' + '%11s' * 7) % ('Epoch', 'GPU_mem', 'box_loss', 'obj_loss', 'cls_loss', 'Instances', 'Size'))
if RANK in {-1, 0}:
pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT) # progress bar
optimizer.zero_grad()
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
callbacks.run('on_train_batch_start')
ni = i + nb * epoch # number integrated batches (since train start)
imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0

# Warmup
if ni <= nw:
xi = [0, nw] # x interp
# compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
for j, x in enumerate(optimizer.param_groups):
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)])
if 'momentum' in x:
x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

# Multi-scale
if opt.multi_scale:
sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
sf = sz / max(imgs.shape[2:]) # scale factor
if sf != 1:
ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)

# Forward
with torch.cuda.amp.autocast(amp):
pred = model(imgs) # forward
loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
if RANK != -1:
loss *= WORLD_SIZE # gradient averaged between devices in DDP mode
if opt.quad:
loss *= 4.

# Backward
scaler.scale(loss).backward()

# Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
if ni - last_opt_step >= accumulate:
scaler.unscale_(optimizer) # unscale gradients
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients
scaler.step(optimizer) # optimizer.step
scaler.update()
optimizer.zero_grad()
if ema:
ema.update(model)
last_opt_step = ni

# Log
if RANK in {-1, 0}:
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
pbar.set_description(('%11s' * 2 + '%11.4g' * 5) %
(f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
callbacks.run('on_train_batch_end', model, ni, imgs, targets, paths, list(mloss))
if callbacks.stop_training:
return
# end batch ------------------------------------------------------------------------------------------------

# Scheduler
lr = [x['lr'] for x in optimizer.param_groups] # for loggers
scheduler.step()

if RANK in {-1, 0}:
# mAP
callbacks.run('on_train_epoch_end', epoch=epoch)
ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
if not noval or final_epoch: # Calculate mAP
results, maps, _ = validate.run(data_dict,
batch_size=batch_size // WORLD_SIZE * 2,
imgsz=imgsz,
half=amp,
model=ema.ema,
single_cls=single_cls,
dataloader=val_loader,
save_dir=save_dir,
plots=False,
callbacks=callbacks,
compute_loss=compute_loss)

# Update best mAP
fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
stop = stopper(epoch=epoch, fitness=fi) # early stop check
if fi > best_fitness:
best_fitness = fi
log_vals = list(mloss) + list(results) + lr
callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)

# Save model
if (not nosave) or (final_epoch and not evolve): # if save
ckpt = {
'epoch': epoch,
'best_fitness': best_fitness,
'model': deepcopy(de_parallel(model)).half(),
'ema': deepcopy(ema.ema).half(),
'updates': ema.updates,
'optimizer': optimizer.state_dict(),
'opt': vars(opt),
'git': GIT_INFO, # {remote, branch, commit} if a git repo
'date': datetime.now().isoformat()}

# Save last, best and delete
torch.save(ckpt, last)
if best_fitness == fi:
torch.save(ckpt, best)
if opt.save_period > 0 and epoch % opt.save_period == 0:
torch.save(ckpt, w / f'epoch{epoch}.pt')
del ckpt
callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)

# EarlyStopping
if RANK != -1: # if DDP training
broadcast_list = [stop if RANK == 0 else None]
dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks
if RANK != 0:
stop = broadcast_list[0]
if stop:
break # must break all DDP ranks

# end epoch ----------------------------------------------------------------------------------------------------
# end training -----------------------------------------------------------------------------------------------------
if RANK in {-1, 0}:
LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
for f in last, best:
if f.exists():
strip_optimizer(f) # strip optimizers
if f is best:
LOGGER.info(f'\nValidating {f}...')
results, _, _ = validate.run(
data_dict,
batch_size=batch_size // WORLD_SIZE * 2,
imgsz=imgsz,
model=attempt_load(f, device).half(),
iou_thres=0.65 if is_coco else 0.60, # best pycocotools at iou 0.65
single_cls=single_cls,
dataloader=val_loader,
save_dir=save_dir,
save_json=is_coco,
verbose=True,
plots=plots,
callbacks=callbacks,
compute_loss=compute_loss) # val best model with plots
if is_coco:
callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)

callbacks.run('on_train_end', last, best, epoch, results)

torch.cuda.empty_cache()
return results


def parse_opt(known=False):
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='初始 weights 路徑')
parser.add_argument('--cfg', type=str, default='', help='model.yaml 路徑')
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml 路徑')
parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters 路徑')
parser.add_argument('--epochs', type=int, default=100, help='總訓練時期')
parser.add_argument('--batch-size', type=int, default=16, help='所有 GPU 的總批次大小,-1 表示自動批次')
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val 圖像大小(像素)')
parser.add_argument('--rect', action='store_true', help='矩形訓練')
parser.add_argument('--resume', nargs='?', const=True, default=False, help='恢復最近的訓練')
parser.add_argument('--nosave', action='store_true', help='只保存最後的檢查點')
parser.add_argument('--noval', action='store_true', help='只驗證最終epoch')
parser.add_argument('--noautoanchor', action='store_true', help='禁用自動錨點')
parser.add_argument('--noplots', action='store_true', help='不保存繪圖文件')
parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
parser.add_argument('--cache', type=str, nargs='?', const='ram', help='圖像--緩存內存/磁盤')
parser.add_argument('--image-weights', action='store_true', help='使用weighted圖像選擇進行訓練')
parser.add_argument('--device', default='', help='cuda 設備,即 0 或 0,1,2,3 或 cpu')
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
parser.add_argument('--single-cls', action='store_true', help='將多類數據訓練為單類')
parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='優化器')
parser.add_argument('--sync-bn', action='store_true', help='使用 SyncBatchNorm,僅在 DDP 模式下可用')
parser.add_argument('--workers', type=int, default=8, help='最大數據加載器工作人員(在 DDP 模式下按 RANK)')
parser.add_argument('--project', default=ROOT / 'runs/train', help='保存到項目/名稱')
parser.add_argument('--name', default='exp', help='保存到項目/名稱')
parser.add_argument('--exist-ok', action='store_true', help='現有項目/名稱OK,不要增加')
parser.add_argument('--quad', action='store_true', help='quad dataloader')
parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
parser.add_argument('--seed', type=int, default=0, help='Global training seed')
parser.add_argument('--local_rank', type=int, default=-1, help='自動 DDP Multi-GPU 參數,請勿修改')

# 記錄器參數
parser.add_argument('--entity', default=None, help='實體')
parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='上傳數據,“val”選項')
parser.add_argument('--bbox_interval', type=int, default=-1, help='設置邊界框圖像記錄間隔')
parser.add_argument('--artifact_alias', type=str, default='latest', help='要使用的數據集工件版本')

return parser.parse_known_args()[0] if known else parser.parse_args()


def main(opt, callbacks=Callbacks()):
# Checks
if RANK in {-1, 0}:
print_args(vars(opt))
check_git_status()
check_requirements()

# Resume (from specified or most recent last.pt)
if opt.resume and not check_comet_resume(opt) and not opt.evolve:
last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run())
opt_yaml = last.parent.parent / 'opt.yaml' # train options yaml
opt_data = opt.data # original dataset
if opt_yaml.is_file():
with open(opt_yaml, errors='ignore') as f:
d = yaml.safe_load(f)
else:
d = torch.load(last, map_location='cpu')['opt']
opt = argparse.Namespace(**d) # replace
opt.cfg, opt.weights, opt.resume = '', str(last), True # reinstate
if is_url(opt_data):
opt.data = check_file(opt_data) # avoid HUB resume auth timeout
else:
opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \
check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project) # checks
assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
if opt.evolve:
if opt.project == str(ROOT / 'runs/train'): # if default project name, rename to runs/evolve
opt.project = str(ROOT / 'runs/evolve')
opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume
if opt.name == 'cfg':
opt.name = Path(opt.cfg).stem # use model.yaml as name
opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))

# DDP mode
device = select_device(opt.device, batch_size=opt.batch_size)
if LOCAL_RANK != -1:
msg = 'is not compatible with YOLOv5 Multi-GPU DDP training'
assert not opt.image_weights, f'--image-weights {msg}'
assert not opt.evolve, f'--evolve {msg}'
assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size'
assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE'
assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
torch.cuda.set_device(LOCAL_RANK)
device = torch.device('cuda', LOCAL_RANK)
dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")

# Train
if not opt.evolve:
train(opt.hyp, opt, device, callbacks)

# Evolve hyperparameters (optional)
else:
# Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
meta = {
'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
'box': (1, 0.02, 0.2), # box loss gain
'cls': (1, 0.2, 4.0), # cls loss gain
'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
'iou_t': (0, 0.1, 0.7), # IoU training threshold
'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
'scale': (1, 0.0, 0.9), # image scale (+/- gain)
'shear': (1, 0.0, 10.0), # image shear (+/- deg)
'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
'mosaic': (1, 0.0, 1.0), # image mixup (probability)
'mixup': (1, 0.0, 1.0), # image mixup (probability)
'copy_paste': (1, 0.0, 1.0)} # segment copy-paste (probability)

with open(opt.hyp, errors='ignore') as f:
hyp = yaml.safe_load(f) # load hyps dict
if 'anchors' not in hyp: # anchors commented in hyp.yaml
hyp['anchors'] = 3
if opt.noautoanchor:
del hyp['anchors'], meta['anchors']
opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch
# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv'
if opt.bucket:
os.system(f'gsutil cp gs://{opt.bucket}/evolve.csv {evolve_csv}') # download evolve.csv if exists

for _ in range(opt.evolve): # generations to evolve
if evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate
# Select parent(s)
parent = 'single' # parent selection method: 'single' or 'weighted'
x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1)
n = min(5, len(x)) # number of previous results to consider
x = x[np.argsort(-fitness(x))][:n] # top n mutations
w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0)
if parent == 'single' or len(x) == 1:
# x = x[random.randint(0, n - 1)] # random selection
x = x[random.choices(range(n), weights=w)[0]] # weighted selection
elif parent == 'weighted':
x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination

# Mutate
mp, s = 0.8, 0.2 # mutation probability, sigma
npr = np.random
npr.seed(int(time.time()))
g = np.array([meta[k][0] for k in hyp.keys()]) # gains 0-1
ng = len(meta)
v = np.ones(ng)
while all(v == 1): # mutate until a change occurs (prevent duplicates)
v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
hyp[k] = float(x[i + 7] * v[i]) # mutate

# Constrain to limits
for k, v in meta.items():
hyp[k] = max(hyp[k], v[1]) # lower limit
hyp[k] = min(hyp[k], v[2]) # upper limit
hyp[k] = round(hyp[k], 5) # significant digits

# Train mutation
results = train(hyp.copy(), opt, device, callbacks)
callbacks = Callbacks()
# Write mutation results
keys = ('metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', 'val/box_loss',
'val/obj_loss', 'val/cls_loss')
print_mutation(keys, results, hyp.copy(), save_dir, opt.bucket)

# Plot results
plot_evolve(evolve_csv)
LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n'
f"Results saved to {colorstr('bold', save_dir)}\n"
f'Usage example: $ python train.py --hyp {evolve_yaml}')


def run(**kwargs):
# Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt')
opt = parse_opt(True)
for k, v in kwargs.items():
setattr(opt, k, v)
main(opt)
return opt


if __name__ == "__main__":
opt = parse_opt()
main(opt)

圖片&影片&串流【檢測】

除了可偵測圖片外,也能偵測影片、資料夾、webcam、即時串流、網頁上的影片

  • 範例(即時辨識):
    1
    python detect.py --weights best.pt --conf-thres 0.5 --img-size 640 --view-img --name detect-run --project runs/detect --save-crop --save-txt --vid-stride 20 --source 0
    --weights :則可用來指定預訓練的模型。ex:--weights best.pt
    --sourcefile.jpg#圖片、file.mp4#影片、dir/#資料夾、0#攝像頭(即時辨識)。
    --img-size :可以指定影像的大小,對於偵測比較小的物件時,可以加大影像的大小,預設的影像大小為 640。
    --iou-thres :是設定 IoU 門檻值。
    --conf-thres :則是設定信心度門檻值。
    --cuda device :預設0,可調整0,1,2,3 or cpu。
    --save-txt:保存結果到*.txt。
    --save-conf:在 –save-txt 標籤中保存信心。
    --view-img:顯示視窗圖片。
    --nosave:不保存圖片/視頻。
    --classes:按類別過濾,如【–class 0, or –class 0 2 3】。
    --update:更新所有模型。
    --project:將驗證結果保存到自訂資料夾。ex:--project runs/detect
    --name:將結果保存到項目/名稱。ex:--name yolov5s-detect
    --exist-ok:現有項目/名稱ok,不遞增。
    • (查看更多指令說明):

      Anaconda Prompt (yolov5) 上輸入:

      1
      python detect.py -h

detect.py

detect.py 中文修改補充(點擊展開)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
運行YOLOv5檢測推斷圖像,視頻,目錄,glob, YouTube,網絡攝像頭,etc等。

用法 - 來源:
$ python detect.py --weights yolov5s.pt --source 0 # webcam
img.jpg # image
vid.mp4 # video
screen # screenshot
path/ # directory
'path/*.jpg' # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream

用法 - 格式:
$ python detect.py --weights yolov5s.pt # PyTorch
yolov5s.torchscript # TorchScript
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov5s_openvino_model # OpenVINO
yolov5s.engine # TensorRT
yolov5s.mlmodel # CoreML (macOS-only)
yolov5s_saved_model # TensorFlow SavedModel
yolov5s.pb # TensorFlow GraphDef
yolov5s.tflite # TensorFlow Lite
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
yolov5s_paddle_model # PaddlePaddle
"""

import argparse
import os
import platform
import sys
from pathlib import Path

import torch

FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # 將 ROOT 添加到 PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative

from models.common import DetectMultiBackend
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh)
from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import select_device, smart_inference_mode


@smart_inference_mode()
def run(
weights=ROOT / 'yolov5s.pt', # 模型路徑或 triton URL
source=ROOT / 'data/images', # 文件/目錄/URL/glob/screen/0(網絡攝像頭)
data=ROOT / 'data/coco128.yaml', # dataset.yaml路徑
imgsz=(640, 640), # 推理大小(高度, 寬度)
conf_thres=0.25, # confidence 閾值
iou_thres=0.45, # NMS IOU 閾值
max_det=1000, # 每張圖片的最大檢測數
device='', # cuda 設備,即 0 或 0,1,2,3 或 cpu
view_img=False, # 顯示結果
save_txt=False, # 將結果保存到 *.txt
save_conf=False, # 在 --save-txt 標籤中保存信心
save_crop=False, # 保存裁剪的預測框
nosave=False, # 不保存圖片/視頻
classes=None, # 按類別過濾:--class 0,或--class 0 2 3
agnostic_nms=False, # class-agnostic NMS
augment=False, # 增強推理
visualize=False, # 可視化特徵
update=False, # 更新所有模型
project=ROOT / 'runs/detect', # 將結果保存到項目/名稱
name='exp', # 將結果保存到項目/名稱
exist_ok=False, # 現有項目/名稱可以,不要增加
line_thickness=3, # 邊界框厚度(pixels像素)
hide_labels=False, # 隱藏標籤
hide_conf=False, # hide confidences
half=False, # 使用 FP16 半精度推理
dnn=False, # 使用 OpenCV DNN 進行 ONNX 推理
vid_stride=1, # 視頻幀率步幅
):
source = str(source)
save_img = not nosave and not source.endswith('.txt') # 保存推理圖像
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
screenshot = source.lower().startswith('screen')
if is_url and is_file:
source = check_file(source) # download

# 目錄
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir

# 加載模型
device = select_device(device)
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
stride, names, pt = model.stride, model.names, model.pt
imgsz = check_img_size(imgsz, s=stride) # 檢查圖像大小

# 數據加載器
bs = 1 # batch_size
if webcam:
view_img = check_imshow(warn=True)
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
bs = len(dataset)
elif screenshot:
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
vid_path, vid_writer = [None] * bs, [None] * bs

# 運行推理
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
for path, im, im0s, vid_cap, s in dataset:
with dt[0]:
im = torch.from_numpy(im).to(model.device)
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
im = im[None] # expand for batch dim

# 推理
with dt[1]:
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
pred = model(im, augment=augment, visualize=visualize)

# NMS
with dt[2]:
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)

# 第二階段分類器(可選)
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)

# 過程預測
for i, det in enumerate(pred): # 每張圖片
seen += 1
if webcam: # batch_size >= 1
p, im0, frame = path[i], im0s[i].copy(), dataset.count
s += f'{i}: '
else:
p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)

p = Path(p) # to Path
save_path = str(save_dir / p.name) # im.jpg
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
s += '%gx%g ' % im.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
imc = im0.copy() if save_crop else im0 # for save_crop
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
if len(det):
# 將框從 img_size 重新縮放為 im0 大小
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()

# Print結果
for c in det[:, 5].unique():
n = (det[:, 5] == c).sum() # 每class檢測
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string

# Write結果
for *xyxy, conf, cls in reversed(det):

if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh # 歸一化的xywh
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label 格式
with open(f'{txt_path}.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')

if save_img or save_crop or view_img: # Add bbox to image
c = int(cls) # integer class
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
annotator.box_label(xyxy, label, color=colors(c, True))
if save_crop:
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)

# 串流結果
im0 = annotator.result()
if view_img:
if platform.system() == 'Linux' and p not in windows:
windows.append(p)
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # 允許調整窗口大小 (Linux)
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
cv2.imshow(str(p), im0) #(視窗名稱,顯示圖片)
cv2.waitKey(1) # 1 毫秒.

# 保存結果(帶檢測的圖像)
if save_img:
if dataset.mode == 'image':
cv2.imwrite(save_path, im0)
else: # 'video' or 'stream'
if vid_path[i] != save_path: # new video
vid_path[i] = save_path
if isinstance(vid_writer[i], cv2.VideoWriter):
vid_writer[i].release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path = str(Path(save_path).with_suffix('.mp4')) # 在結果視頻上強制 *.mp4 後綴
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer[i].write(im0)

# 提升在訓練時的效率,生成的"images"和"labels"可以用來加強訓練。
# 條件是辨識新的圖片或影片,做為新的訓練樣本
if len(det):
ok_file="images" #【有】辨識到的圖,存放的資料夾名稱
img_path = str(save_dir / ok_file / p.stem) +("_"+str(seen)+".jpg") # im.txt
if not os.path.isdir(str(save_dir / ok_file)):
os.makedirs(str(save_dir / ok_file))
cv2.imwrite(img_path,im0s) #(寫入路徑,圖片) #im0s為辨識前原始圖 #im0為辨識過後有眶圖
box_file="images_box" #【有】辨識到的圖,存放的資料夾名稱
img_path = str(save_dir / box_file / p.stem) +("_"+str(seen)+".jpg") # im.txt
if not os.path.isdir(str(save_dir / box_file)):
os.makedirs(str(save_dir / box_file))
cv2.imwrite(img_path,im0) #(寫入路徑,圖片) #im0s為辨識前原始圖 #im0為辨識過後有眶圖
else:
# 可以手動將沒有辨識到的圖,另外進行labelimg處理。
no_file="no_images" #【沒有】辨識到的圖,存放的資料夾名稱
img_path = str(save_dir / no_file / p.stem) +("_"+str(seen)+".jpg") # im.txt
if not os.path.isdir(str(save_dir / no_file)):
os.makedirs(str(save_dir / no_file))
cv2.imwrite(img_path,im0s) #(寫入路徑,圖片) #im0s為辨識前原始圖 #im0為辨識過後有眶圖

# Print時間(僅推理)
LOGGER.info(f"{s}{'' if len(det) else '(No detections), '}{dt[1].dt * 1E3:.1f}ms")

# Print結果
t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image # 每幅圖像的速度
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
if save_txt or save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
if update:
strip_optimizer(weights[0]) # 更新模型(修復 SourceChangeWarning)


def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='(可選)模型路徑或 triton URL')
parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='文件/目錄/URL/glob/screen/0(網絡攝像頭)')
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(可選)dataset.yaml 路徑')
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[480,640], help='推理大小 h,w')
parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence 閾值')
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU 閾值')
parser.add_argument('--max-det', type=int, default=1000, help='每張圖片的最大檢測數')
parser.add_argument('--device', default='', help='cuda 設備,即 0 或 0,1,2,3 或 cpu')
parser.add_argument('--view-img', action='store_true', help='顯示辨識結果')
parser.add_argument('--save-txt', action='store_true', help='將結果保存到 *.txt')
parser.add_argument('--save-conf', action='store_true', help='在 --save-txt 標籤中保存信心')
parser.add_argument('--save-crop', action='store_true', help='保存裁剪的預測框')
parser.add_argument('--nosave', action='store_true', help='不保存圖片/視頻')
parser.add_argument('--classes', nargs='+', type=int, help='按類別過濾:--classes 0,或--classes 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='增強推理')
parser.add_argument('--visualize', action='store_true', help='可視化特徵')
parser.add_argument('--update', action='store_true', help='更新所有模型')
parser.add_argument('--project', default=ROOT / 'runs/detect', help='將結果保存到項目/名稱')
parser.add_argument('--name', default='exp', help='將結果保存到項目/名稱')
parser.add_argument('--exist-ok', action='store_true', help='現有項目/名稱可以,不要增加')
parser.add_argument('--line-thickness', default=1, type=int, help='邊界框厚度(pixels像素)')
parser.add_argument('--hide-labels', default=False, action='store_true', help='隱藏標籤')
parser.add_argument('--hide-conf', default=False, action='store_true', help='隱藏confidences')
parser.add_argument('--half', action='store_true', help='使用FP16半精度推斷')
parser.add_argument('--dnn', action='store_true', help='使用OpenCV DNN進行ONNX推斷')
parser.add_argument('--vid-stride', type=int, default=1, help='視頻幀率步幅')
opt = parser.parse_args()
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
print_args(vars(opt))
return opt


def main(opt):
check_requirements(exclude=('tensorboard', 'thop'))
run(**vars(opt))


if __name__ == "__main__":
opt = parse_opt()
main(opt)

如果遇到錯誤問題,再來參考這邊

  1. OMP: Error #15: Initializing libomp.dylib, but found libiomp5.dylib already initialize
    • 辦法1:
      在執行train.py程式內,最上方添加輸入此代碼:
      1
      2
      import os
      os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
      • 示意圖:
    • 辦法2:
      刪除\Anaconda3\pkgs目錄下,包含libomp.dylib檔案的所有資料夾。
      • PKGS的概念:
        在anaconda中,最安全的安裝和升級命令是conda install,而python中是pip install
        但在anaconda下依然可以使用pip升級,這樣一些依賴可能會因為更新後的版本過高出現異常,所以在安裝包的時候,優先選擇conda install
        在conda的設計中,目錄’pkgs’是下載、存放緩存,以及提取下載的conda包的地方。同時,anaconda一起攜帶的包也會放在這裡。
        它有一個非常關鍵的作用:我們在構建一些envs(環境)的時候,對一些包的依賴會通過硬盤鏈接鏈接到pkgs目錄,這樣虛擬環境生成的速度大大加快,佔用空間就大大減小了!

  1. UnicodeDecodeError: 'cp950' codec can't decode byte 0x93 in position 25: illegal multibyte sequence
    如果出現以上錯誤,這是Windows的問題,所以我們如果要避免類似問題發生,盡量在要編輯的.yaml檔案裡不要添加任何中文(Chinese)
  • 注意:檔案必須為UTF-8的編碼
  • 可到控制台>時鐘和區域>地區>系統管理>變更系統地區設定> Bata:使用Unicode UTF-8提供全球語言支援
    選項打勾即可。

  1. export GIT_PYTHON_REFRESH=quiet
    如果出現這個錯誤,代表缺乏安裝git的模組,請用以下Conda指令安裝:
    1
    conda install git

本站作者使用YOLO開發紀錄

提升訓練效益

  • 如下方代碼所示:
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    # 提升在訓練時的效率,生成的"images"和"labels"可以用來加強訓練。
    # 條件是辨識新的圖片或影片,做為新的訓練樣本
    if len(det):
    ok_file="images" #【有】辨識到的圖,存放的資料夾名稱
    img_path = str(save_dir / ok_file / p.stem) +("_"+str(seen)+".jpg") # im.txt
    if not os.path.isdir(str(save_dir / ok_file)):
    os.makedirs(str(save_dir / ok_file))
    cv2.imwrite(img_path,im0s) #(寫入路徑,圖片) #im0s為辨識前原始圖 #im0為辨識過後有眶圖
    box_file="images_box" #【有】辨識到的圖,存放的資料夾名稱
    img_path = str(save_dir / box_file / p.stem) +("_"+str(seen)+".jpg") # im.txt
    if not os.path.isdir(str(save_dir / box_file)):
    os.makedirs(str(save_dir / box_file))
    cv2.imwrite(img_path,im0) #(寫入路徑,圖片) #im0s為辨識前原始圖 #im0為辨識過後有眶圖
    else:
    # 可以手動將沒有辨識到的圖,另外進行labelimg處理。
    no_file="no_images" #【沒有】辨識到的圖,存放的資料夾名稱
    img_path = str(save_dir / no_file / p.stem) +("_"+str(seen)+".jpg") # im.txt
    if not os.path.isdir(str(save_dir / no_file)):
    os.makedirs(str(save_dir / no_file))
    cv2.imwrite(img_path,im0s) #(寫入路徑,圖片) #im0s為辨識前原始圖 #im0為辨識過後有眶圖

YOLO框取指定解析度的圖,可作為後續CNN訓練

將以下代碼,放入到det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()此行的上方,highwight可依個人需求進行調整。

  • 如下方代碼所示:
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    if len(det):
    #####以下代碼#####
    #調整裁剪後的預測圖
    #裁減範圍若撞到圖片的邊緣,尺寸會有變化。
    high=50 #圖片裁減的調整值最低為12,若低於 12 裁減尺寸會有非預期結果
    wight=50 #圖片裁減的調整值最低為12,若低於 12 裁減尺寸會有非預期結果
    # 請勿變更
    ax=det[:, 0:1] ; ay=det[:, 1:2]
    bx=det[:, 2:3] ; by=det[:, 3:4]
    centerX=ax+((bx-ax)/2)
    centerY=ay+((by-ay)/2)
    #print(NewAX,NewAY,NewBX,NewBY)
    det[:, 0:1]=int((centerX)-((wight-11)/2))
    det[:, 1:2]=int((centerY)-((high-11)/2))
    det[:, 2:3]=int((centerX)+((wight-11)/2))
    det[:, 3:4]=int((centerY)+((high-11)/2))
    #####以上代碼#####
    # 將框從 img_size 重新縮放為 im0 大小
    det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()

建立TCP/IP通訊

下方Code是網路上找的範本,我是使用這個範本更改成屬於我自己的版本,這裡我就不完全寫出來了!

  1. 伺服端

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    import socket

    # 設定IP和PORT
    HOST = '0.0.0.0'
    PORT = 7000
    # 建立伺服器
    s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    s.bind((HOST, PORT))
    s.listen(5)
    # 輸出伺服器提示連線訊息
    print('server start at: %s:%s' % (HOST, PORT))
    print('wait for connection...')

    # 設定迴圈,不關閉伺服器
    while True:
    # 建立連線
    conn, addr = s.accept()
    print('connected by ' + str(addr)) # 輸出執行結果

    # 接收客戶端訊息
    indata = conn.recv(1024)
    print('recv: ' + indata.decode())

    # 傳送到客戶端訊息
    outdata = 'echo ' + indata.decode()
    conn.send(outdata.encode())
    conn.close()

    # 關閉伺服器
    s.close()
  2. 客戶端

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    import socket
    # 設定欲連線的伺服端的IP和PORT
    HOST = '0.0.0.0'
    PORT = 7000
    # 設定連線
    s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    s.connect((HOST, PORT))

    # 傳送資料
    outdata = 'hello tcp'
    print('send: ' + outdata)
    s.send(outdata.encode())

    # 接收伺服端訊息
    indata = s.recv(1024) # 這個會delay,若必要時,可以設定超時跳出
    print('recv: ' + indata.decode())

    # 關閉客戶端連線
    s.close()

提升YOLO辨識度

我整理網路上的文章記錄在這裡,若使用上有問題,我會再變更內文。

數據集方面

  1. 每個類別的圖像
    每個類別的圖像張數大於1500張

  2. 每個類別的實例
    我們人工標註的目標框就是實例,每個類別的實例要大於10000張。

  3. 圖像的多樣性
    數據集必須展現出部署環境,推薦來自一天中不同時間、不同季節、不同天氣、不同光照、不同角度、不同數據源(在線抓取、本地收集、不同相機)等的圖像。

  4. 標註的一致性
    所有圖像中所有類的所有實例都必須標註。部分標註將不起作用。

  5. 標註的精度
    邊框必須緊密地包圍每個目標。目標和邊框之間不應存在任何空。任何目標都不應缺少標籤。
    背景圖像:背景圖像是圖像裡沒有感興趣目標的圖像,加到數據集以減少誤報(FP)。
    建議約0-10%的背景圖像,以幫助減少FP(COCO數據集有1000張背景圖像供參考,佔總數的1%)。